Attentive multi-view deep subspace clustering net
نویسندگان
چکیده
In this paper, we propose a novel Attentive Multi-View Deep Subspace Nets (AMVDSN), which deeply explores underlying consistent and view-specific information from multiple views fuse them by considering each view’s dynamic contribution obtained attention mechanism. Unlike most multi-view subspace learning methods that they directly reconstruct data points on raw or only consider consistency complementarity when representation in deep shallow space, our proposed method seeks to find joint latent explicitly considers both consensus among views, then performs clustering learned representation. Besides, different contribute differently learning, therefore introduce mechanism derive weight for view, much better than previous fusion the field of clustering. The algorithm is intuitive can be easily optimized just using Stochastic Gradient Descent (SGD) because neural network framework, also provides strong non-linear characterization capability compared with traditional approaches. experimental results seven real-world sets have demonstrated effectiveness against some state-of-the-art
منابع مشابه
Robust Localized Multi-view Subspace Clustering
In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of realworld applications, the confidence levels of samples in the same viewmay also vary. Thus considering a unified weight for a view may lead to suboptim...
متن کاملMulti-view low-rank sparse subspace clustering
Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relyi...
متن کاملDeep Sparse Subspace Clustering
In this paper, we present a deep extension of Sparse Subspace Clustering, termed Deep Sparse Subspace Clustering (DSSC). Regularized by the unit sphere distribution assumption for the learned deep features, DSSC can infer a new data affinity matrix by simultaneously satisfying the sparsity principle of SSC and the nonlinearity given by neural networks. One of the appealing advantages brought by...
متن کاملDeep Subspace Clustering Networks
We present a novel deep neural network architecture for unsupervised subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the “selfexpressiveness” property that has proven effective in traditional subspace clusteri...
متن کاملMulti-view clustering via pairwise sparse subspace representation
Multi-view clustering, which aims to cluster datasets with multiple sources of information, has a wide range of applications in the communities of data mining and pattern recognition. Generally, it makes use of the complementary information embedded in multiple views to improve clustering performance. Recent methods usually find a low-dimensional embedding of multi-view data, but often ignore s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.01.011